63 research outputs found

    Solar Neutrinos Before and After KamLAND

    Get PDF
    We use the recently reported KamLAND measurements on oscillations of reactor anti-neutrinos, together with the data of previously reported solar neutrino experiments, to show that: (1) the total 8B neutrino flux emitted by the Sun is 1.00(1.0 \pm 0.06) of the standard solar model (BP00) predicted flux, (2) the KamLAND measurements reduce the area of the globally allowed oscillation regions that must be explored in model fitting by six orders of magnitude in the Delta m^2-tan^2 theta plane, (3) LMA is now the unique oscillation solution to a CL of 4.7sigma, (4) maximal mixing is disfavored at 3.1 sigma, (5) active-sterile admixtures are constrained to sin^2 eta<0.13 at 1 sigma, (6) the observed ^8B flux that is in the form of sterile neutrinos is 0.00^{+0.09}_{-0.00} (1 sigma), of the standard solar model (BP00) predicted flux, and (7) non-standard solar models that were invented to completely avoid solar neutrino oscillations are excluded by KamLAND plus solar at 7.9 sigma . We also refine quantitative predictions for future 7Be and p-p solar neutrino experiments.Comment: Published version, includes editorial improvement

    Is the Lambda CDM Model Consistent with Observations of Large-Scale Structure?

    Full text link
    The claim that large-scale structure data independently prefers the Lambda Cold Dark Matter model is a myth. However, an updated compilation of large-scale structure observations cannot rule out Lambda CDM at 95% confidence. We explore the possibility of improving the model by adding Hot Dark Matter but the fit becomes worse; this allows us to set limits on the neutrino mass.Comment: To appear in Proceedings of "Sources and Detection of Dark Matter/Energy in the Universe", ed. D. B. Cline. 6 pages, including 2 color figure

    Present and Future Bounds on Non-Standard Neutrino Interactions

    Get PDF
    We consider Non-Standard neutrino Interactions (NSI), described by four-fermion operators of the form (νˉαγνβ)(fˉγf)(\bar{\nu}_{\alpha} \gamma {\nu}_{\beta}) (\bar{f} \gamma f), where ff is an electron or first generation quark. We assume these operators are generated at dimension 8\geq 8, so the related vertices involving charged leptons, obtained by an SU(2) transformation νδeδ\nu_{\delta} \to e_{\delta}, do not appear at tree level. These related vertices necessarily arise at one loop, via WW exchange. We catalogue current constraints from sin2θW\sin^2 \theta_W measurements in neutrino scattering, from atmospheric neutrino observations, from LEP, and from bounds on the related charged lepton operators. We estimate future bounds from comparing KamLAND and solar neutrino data, and from measuring sin2θW\sin^2 \theta_W at the near detector of a neutrino factory. Operators constructed with νμ\nu_\mu and νe\nu_e should not confuse the determination of oscillation parameters at a ν\nufactory, because the processes we consider are more sensitive than oscillations at the far detector. For operators involving ντ\nu_\tau, we estimate similar sensitivities at the near and far detector.Comment: Erratum added at the end of the documen

    The galaxy-mass correlation function measured from weak lensing in the Sloan Digital Sky Survey

    Get PDF
    We present galaxy-galaxy lensing measurements over scales 0.025 to 10 h(-1) Mpc in the Sloan Digital Sky Survey (SDSS). Using a flux-limited sample of 127,001 lens galaxies with spectroscopic redshifts and mean luminosity [L] similar to L-* and 9,020,388 source galaxies with photometric redshifts, we invert the lensing signal to obtain the galaxy-mass correlation function xi(gm). We find xi(gm) is consistent with a power law, xi(gm) (r = r(0))(-gamma), with best-fit parameters gamma = 1.79 +/- 0.06 and r(0) (5.4 +/- 0.7) (0.27/Omega(m))(1/gamma) h(-1) Mpc. At fixed separation, the ratio xi(gg)/xi(gm) = b/r, where b is the bias and r is the correlation coefficient. Comparing with the galaxy autocorrelation function for a similarly selected sample of SDSS galaxies, we find that b/r is approximately scale-independent over scales 0.2 - 6.7 h(-1) Mpc, with mean [b/r] = (1.3 +/- 0.2) (Omega(m)/0.27). We also find no scale dependence in b/r for a volume-limited sample of luminous galaxies (-23.0 < M-r < -21.5). The mean b/r for this sample is [b/r](Vlim) = (2.0 +/- 0.7) (Omega(m)/0.27). We split the lens galaxy sample into subsets based on luminosity, color, spectral type, and velocity dispersion and see clear trends of the lensing signal with each of these parameters. The amplitude and logarithmic slope of xi(gm) increase with galaxy luminosity. For high luminosities (L similar to 5 L-*), xi(gm) deviates significantly from a power law. These trends with luminosity also appear in the subsample of red galaxies, which are more strongly clustered than blue galaxies

    Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales

    Full text link
    Most of the matter in the universe is not luminous and can be observed directly only through its gravitational effect. An emerging technique called weak gravitational lensing uses background galaxies to reveal the foreground dark matter distribution on large scales. Light from very distant galaxies travels to us through many intervening overdensities which gravitationally distort their apparent shapes. The observed ellipticity pattern of these distant galaxies thus encodes information about the large-scale structure of the universe, but attempts to measure this effect have been inconclusive due to systematic errors. We report the first detection of this ``cosmic shear'' using 145,000 background galaxies to reveal the dark matter distribution on angular scales up to half a degree in three separate lines of sight. The observed angular dependence of this effect is consistent with that predicted by two leading cosmological models, providing new and independent support for these models.Comment: 18 pages, 5 figures: To appear in Nature. (This replacement fixes tex errors and typos.

    Small Scale Structure and High Redshift HI

    Get PDF
    Cosmological simulations with gas dynamics suggest that the Lyman-alpha forest is produced mainly by "small scale structure" --- filaments and sheets that are the high redshift analog of today's galaxy superclusters. There is no sharp distinction between Lyman-alpha clouds and "Gunn-Peterson" absorption produced by the fluctuating IGM -- the Lyman-alpha forest {\it is} the Gunn-Peterson effect. Lyman limit and damped Lyman-alpha absorption arises in the radiatively cooled gas of forming galaxies. At z 23z~2-3, most of the gas is in the photoionized, diffuse medium associated with the Lyman-alpha forest, but most of the {\it neutral} gas is in damped Lyman-alpha systems. We discuss generic evolution of cosmic gas in a hierarchical scenario of structure formation, with particular attention to the prospects for detecting 21cm emission from high redshift HI. A scaling argument based on the present-day cluster mass function suggests that objects with M_{HI} >~ 5e11 h^{-1} \msun should be extremely rare at z 3z~3, so detections with existing instruments will be difficult. An instrument like the proposed Square Kilometer Array could detect individual damped Lyman-alpha systems at high redshift, making it possible to map structure in the high redshift universe in much the same way that today's galaxy redshift surveys map the local large scale structure.Comment: 15 pages, latex w/ crckapb & epsf macros, ps figures; get ps version with all figures from ftp://bessel.mps.ohio-state.edu/pub/dhw/Preprints To appear in Cold Gas at High Redshift, eds. M. Bremer et al. (Kluwer, 1996

    The Cosmological Constant

    Get PDF
    This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero) vacuum energy.Comment: 50 pages. Submitted to Living Reviews in Relativity (http://www.livingreviews.org/), December 199

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag

    Observations of Lyα\alpha Emitters at High Redshift

    Full text link
    In this series of lectures, I review our observational understanding of high-zz Lyα\alpha emitters (LAEs) and relevant scientific topics. Since the discovery of LAEs in the late 1990s, more than ten (one) thousand(s) of LAEs have been identified photometrically (spectroscopically) at z0z\sim 0 to z10z\sim 10. These large samples of LAEs are useful to address two major astrophysical issues, galaxy formation and cosmic reionization. Statistical studies have revealed the general picture of LAEs' physical properties: young stellar populations, remarkable luminosity function evolutions, compact morphologies, highly ionized inter-stellar media (ISM) with low metal/dust contents, low masses of dark-matter halos. Typical LAEs represent low-mass high-zz galaxies, high-zz analogs of dwarf galaxies, some of which are thought to be candidates of population III galaxies. These observational studies have also pinpointed rare bright Lyα\alpha sources extended over 10100\sim 10-100 kpc, dubbed Lyα\alpha blobs, whose physical origins are under debate. LAEs are used as probes of cosmic reionization history through the Lyα\alpha damping wing absorption given by the neutral hydrogen of the inter-galactic medium (IGM), which complement the cosmic microwave background radiation and 21cm observations. The low-mass and highly-ionized population of LAEs can be major sources of cosmic reionization. The budget of ionizing photons for cosmic reionization has been constrained, although there remain large observational uncertainties in the parameters. Beyond galaxy formation and cosmic reionization, several new usages of LAEs for science frontiers have been suggested such as the distribution of {\sc Hi} gas in the circum-galactic medium and filaments of large-scale structures. On-going programs and future telescope projects, such as JWST, ELTs, and SKA, will push the horizons of the science frontiers.Comment: Lecture notes for `Lyman-alpha as an Astrophysical and Cosmological Tool', Saas-Fee Advanced Course 46. Verhamme, A., North, P., Cantalupo, S., & Atek, H. (eds.) --- 147 pages, 103 figures. Abstract abridged. Link to the lecture program including the video recording and ppt files : https://obswww.unige.ch/Courses/saas-fee-2016/program.cg
    corecore